Telegram Group & Telegram Channel
A Conceptual Explanation of Bayesian Hyperparameter Optimization for Machine Learning [2018]

Неделю назад я писал пост про Evolution Strategies. Напомню его область применения:

1) Есть не очень большое пространство параметров
2) Есть функция качества этих параметров, но нет доступа к каким-либо градиентам

Эта область применения не так уж и редко встречается в реальной жизни, и чаще всего это происходит в контексте оптимизации гиперпараметров. В этом случае появляется ещё одно обстоятельство:

3) Функцию качества очень долго и дорого считать

В данной ситуации мы хотим максимально эффективно использовать этот ресурс, извлекать и переиспользовать максимальное количество информации из её замеров. Стандартный Evolution Strategies в этом плане достаточно туп - каждая итерация алгоритма происходит "с чистого листа", а точки для замера выбираются с помощью добавления шума.

Именно здесь на сцену выходит Bayesian model-based optimization. Это целое семейство методов, но все они работают по примерно одному и тому же принципу:

1) Мы пытаемся аппроксимировать распределение P(objective | params)
2) Мы используем каждое наше измерение для обучения этой аппроксимации
3) Выбор следующих кандидатов происходит по-умному, балансируя между неисследованными областями в пространстве параметров и проверкой тех областей, в которых мы ожидаем получить хорошее значение функции

Исследуя всё больше и больше точек, мы получаем всё более точную аппроксимацию функции, как показано на картинке. Остаётся выбрать, каким образом моделировать распределение и выбирать кандидатов.

Один из вариантов, используемых на практике, выглядит так:

- При выборе следующих кандидатов мы максимизируем нечто похожее на "мат. ожидание" P(objective | params), но интеграл берётся только по "хорошим" значениям objective - это называется Expected Improvement
- Для оценки P(objective | params) мы формулу Байеса и переходим к моделированию P(params | objective), которое в свою очередь является композицией из двух распределений P(params) - для "хороших" значений objective и для "плохих" - эти распределения называется`L(params) и `G(params).
- В пунктах выше я упоминал "хорошие" и "плохие" значения. Порог, который их разделяет, выбирается как квантиль уже собранного нами множества значений objective.

При применении капельки математики получается, что Expected Improvement максимизируется в тех точках, в которых максимизируется` L(params) / G(params). Эти точки мы пытаемся найти, сэмплируя много раз из `L(params) и пересчитывая это соотношение. Вся эта схема называется Tree-structured Parzen Estimator.

Описанная процедура гораздо хитрее и тяжелее, чем Evolution Strategies, но всё это несопоставимо дешевле и быстрее, чем каждый подсчёт значения Objective(params). Таким образом, метод хорошо подходит для таких ситуаций, как оптимизация гиперпараметров обучения, и используется в качестве одного из основных в библиотеке Hyperopt.

Метод, конечно, не идеален - он не учитывает зависимости параметров между собой. Это может ограничивать область применения и мешать методу работать для оптимизации более запутанных схем. Бесплатные обеды, как обычно, не завезли.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/261
Create:
Last Update:

A Conceptual Explanation of Bayesian Hyperparameter Optimization for Machine Learning [2018]

Неделю назад я писал пост про Evolution Strategies. Напомню его область применения:

1) Есть не очень большое пространство параметров
2) Есть функция качества этих параметров, но нет доступа к каким-либо градиентам

Эта область применения не так уж и редко встречается в реальной жизни, и чаще всего это происходит в контексте оптимизации гиперпараметров. В этом случае появляется ещё одно обстоятельство:

3) Функцию качества очень долго и дорого считать

В данной ситуации мы хотим максимально эффективно использовать этот ресурс, извлекать и переиспользовать максимальное количество информации из её замеров. Стандартный Evolution Strategies в этом плане достаточно туп - каждая итерация алгоритма происходит "с чистого листа", а точки для замера выбираются с помощью добавления шума.

Именно здесь на сцену выходит Bayesian model-based optimization. Это целое семейство методов, но все они работают по примерно одному и тому же принципу:

1) Мы пытаемся аппроксимировать распределение P(objective | params)
2) Мы используем каждое наше измерение для обучения этой аппроксимации
3) Выбор следующих кандидатов происходит по-умному, балансируя между неисследованными областями в пространстве параметров и проверкой тех областей, в которых мы ожидаем получить хорошее значение функции

Исследуя всё больше и больше точек, мы получаем всё более точную аппроксимацию функции, как показано на картинке. Остаётся выбрать, каким образом моделировать распределение и выбирать кандидатов.

Один из вариантов, используемых на практике, выглядит так:

- При выборе следующих кандидатов мы максимизируем нечто похожее на "мат. ожидание" P(objective | params), но интеграл берётся только по "хорошим" значениям objective - это называется Expected Improvement
- Для оценки P(objective | params) мы формулу Байеса и переходим к моделированию P(params | objective), которое в свою очередь является композицией из двух распределений P(params) - для "хороших" значений objective и для "плохих" - эти распределения называется`L(params) и `G(params).
- В пунктах выше я упоминал "хорошие" и "плохие" значения. Порог, который их разделяет, выбирается как квантиль уже собранного нами множества значений objective.

При применении капельки математики получается, что Expected Improvement максимизируется в тех точках, в которых максимизируется` L(params) / G(params). Эти точки мы пытаемся найти, сэмплируя много раз из `L(params) и пересчитывая это соотношение. Вся эта схема называется Tree-structured Parzen Estimator.

Описанная процедура гораздо хитрее и тяжелее, чем Evolution Strategies, но всё это несопоставимо дешевле и быстрее, чем каждый подсчёт значения Objective(params). Таким образом, метод хорошо подходит для таких ситуаций, как оптимизация гиперпараметров обучения, и используется в качестве одного из основных в библиотеке Hyperopt.

Метод, конечно, не идеален - он не учитывает зависимости параметров между собой. Это может ограничивать область применения и мешать методу работать для оптимизации более запутанных схем. Бесплатные обеды, как обычно, не завезли.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/261

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram and Signal Havens for Right-Wing Extremists

Since the violent storming of Capitol Hill and subsequent ban of former U.S. President Donald Trump from Facebook and Twitter, the removal of Parler from Amazon’s servers, and the de-platforming of incendiary right-wing content, messaging services Telegram and Signal have seen a deluge of new users. In January alone, Telegram reported 90 million new accounts. Its founder, Pavel Durov, described this as “the largest digital migration in human history.” Signal reportedly doubled its user base to 40 million people and became the most downloaded app in 70 countries. The two services rely on encryption to protect the privacy of user communication, which has made them popular with protesters seeking to conceal their identities against repressive governments in places like Belarus, Hong Kong, and Iran. But the same encryption technology has also made them a favored communication tool for criminals and terrorist groups, including al Qaeda and the Islamic State.

Newly uncovered hack campaign in Telegram

The campaign, which security firm Check Point has named Rampant Kitten, comprises two main components, one for Windows and the other for Android. Rampant Kitten’s objective is to steal Telegram messages, passwords, and two-factor authentication codes sent by SMS and then also take screenshots and record sounds within earshot of an infected phone, the researchers said in a post published on Friday.

Knowledge Accumulator from ua


Telegram Knowledge Accumulator
FROM USA